
# Progress in breeding for quality traits

CA Wheat Collaboration Meeting 10/20/10

J. Dubcovsky





Funded by:

**CWC/UC Discovery & CCIA** 

# **UC Discovery–CWC grant**

- 4 year grant awarded (2010-2014)
- CWC \$120,000 matched by UC-Discovery \$84,000 (\$204,000 per year)
- Will support the wheat breeding program and the regional testing program

## **Overall Objective**

• Improve pasta and bread-making quality of California wheat varieties

## **Specific objectives**

- Develop durum and common wheat varieties with increased resistant starch content, (higher amylose content) to increase dietary fiber.
- Develop durum wheat varieties with reduced Cadmium content.
- Improve gluten strength by incorporating the glutenin 7Bx-over-expressor allele (7BxOE) in bread wheat and the 1AL-1DL-1AL translocation carrying the Glu-D1a allele into pasta wheat .
- Increase grain protein content in durum and bread wheat varieties from California by incorporating the *Gpc-B1* high grain protein content locus from wild wheat.
- Discover new genes to improve grain protein concentration and improve nitrogen use efficiency

# Increasing resistant starch in bread and pasta wheat

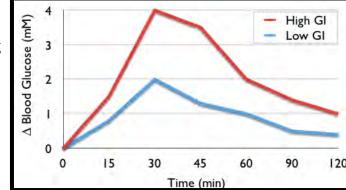
# RESISTANT STARCH

The latest human research details ways in which less-digestible forms of starch may deliver important weight management benefits.

Suzanne Hendrich. Food Technology, March 2010 • **Definition**: **RS** is the sum of starch and products of starch degradation not absorbed in the small intestine of healthy individuals.

**Consumption**: Americans consume approximately **5** g of RS per day (range 3 to 8 g RS per day), considerably lower than intakes associated with health benefits.

• **Top sources**: wheat ~50% (bread 21%, cooked cereals/pastas 19%, cakes, muffins, waffles 7%, cookies 2%), vegetables and legumes (28%), bananas 14%. *J Am Diet Assoc. 2008;108:67-78.* 


## Classification:

- **RS1**: starch that is physically inaccessible to digestive enzymes (whole or **partly milled grains, whole grains**)
- **RS2**: starch that is resistant to digestion due to the nature of the starch granule (e.g. **high-amylose flour**).
- **RS3**: RS that forms from retrograded amylose and amylopectin during food processing. **Retrogradation of amylose is a major source of RS in cooked and cooled foods such as bread**.
- **RS4**: RS produced by chemical modification.

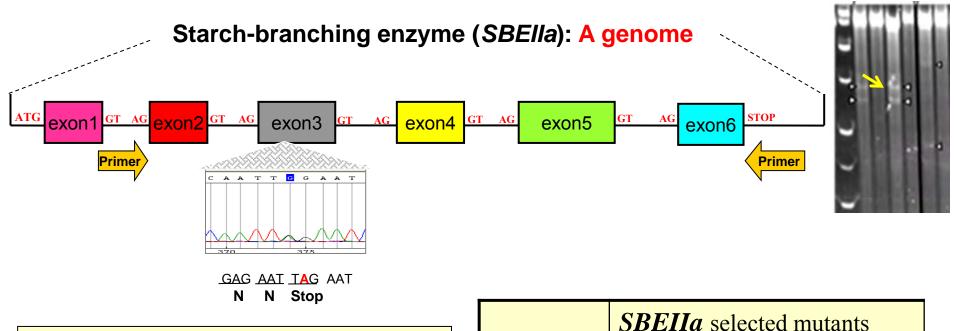

## Beneficial health effects:

**Large intestine:** enhanced fermentation and laxation; increased uptake of minerals such as calcium; changes in the microflora composition, including increased *Bifidobacteria* and reduced pathogen levels; and reduced symptoms of diarrhea.


**Systemic benefits:** extended satiety (helps reduce weight), reduces glycemic index and demand for insulin, increases short-chain fatty acid production in the large intestine (RS fermentation)



## **Reduction of SBEII transcripts improved RS**




In 2006 Australian researchers showed that <u>inactivation of the *SBEIIa* gene</u> using a transgenic approach increased amylose content to >70%.



Mostly RS, escapes digestion & mimics fiber

## TILLING: knock out of SBEII genes with no-transgenic approaches



- •165 mutations identified bread & pasta
- Selected best 1-2 for each copy in the different wheat genomes.
- Backcrossed two generations to reduce background mutations.
- We are now combining the different mutations in a single background to test effect on amylose content.

|         | SBEIIa selected mutants     |
|---------|-----------------------------|
| Pasta A | Truncation (premature stop) |
| Pasta B | Truncation (splice site)    |
| Bread A | 2 amino acid mutations      |
| Bread B | Truncation (splice site)    |
| Bread D | Truncation (splice site)    |

## Effect of high amylose content on pasta quality

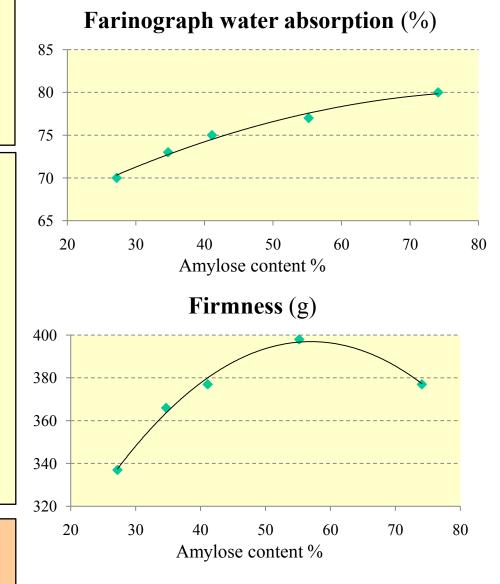
Soh et al. Cereal Chemistry 2006 83: 513-519

## **EFFECT OF AMYLOSE ON PASTA QUALITY**

**Decreasing amylose below normal** (waxy mutants):

#### **Previous results**

- decrease in pasta firmness
- increases stickiness
- pasta with inferior quality than normal durum


#### **Increased amylose: reconstitution experiment**

- semolina starch (28% amylose)
- replaced with high-amylose maize starch flour 27-74%
- constant gluten from the same durum wheat

#### Results

- An increase amylose content is correlated with:
- decrease in RVA parameters (>55% amylose no gelatinization)
- decrease in extensibility (from 33 to 22 mm)
- increased cooking loss (from 5.1 to 5.7)
- increased farinograph water absorption
- increased spaghetti firmness
- no significant changes in pasta stickiness

Conclusion: optimum quality at amylose content **32-44%**.



## Effect of elevated amylose content on breadmaking quality

## **EFFECT ON BREAD QUALITY**

**Reconstitution experiments:** Substitution of 20% of the wheat flour by 75%-amylose maize flour (final 10% increase in amylose). Gluten was added to similar levels.

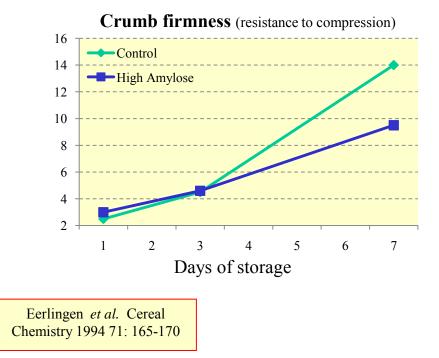
#### Properties of dough from high amylose

- Same mixing time
- Higher water absorption (59.2% to 65.9%)

#### Properties of bread from high amylose

- same loaf volumes (663 ml to 656 ml in HA)
- same specific volume (4.7 to 4.5 in HA)
- same crumb color and structure
- same aroma, taste and mouth-feel)
- significant increased RS and dietary fiber (DF) (Table)
- reduced staling during storage (Figure)

#### Conclusion. 10% increase in amylose content:


- produced breads with significant increases in RS.
- RS increased with storage (amylopectin retrogradation).
- increased water absorption and reduced staling
- no significant effect on bread volume or sensory charact.

|                 |              | Flour   |             |         | ead<br>lay  |         | ead<br>ays  |
|-----------------|--------------|---------|-------------|---------|-------------|---------|-------------|
|                 | Amy-<br>lose | RS<br>% | Di.<br>Fib. | RS<br>% | Di.<br>Fib. | RS<br>% | Di.<br>Fib. |
| Normal          | 25%          | 14.5    | 1.0         | 0.0     | 2.4         | 4.0     | 2.4         |
| High<br>amylose | 35%          | 27.7    | 4.2         | 7.7     | 6.9         | 10.2    | 9.1         |

• Most of the RS is lost during backing in normal amylose wheat

• Increase of RS and DF in breads from high amylose flour

• RS and DF increase with storage



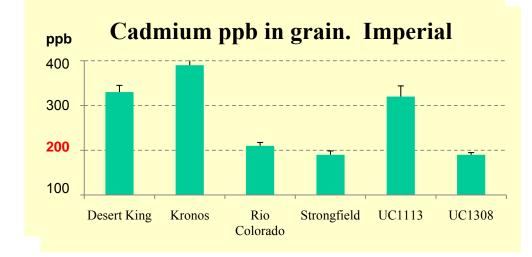
## **Reduction of acceptable Cadmium levels in durum grain**

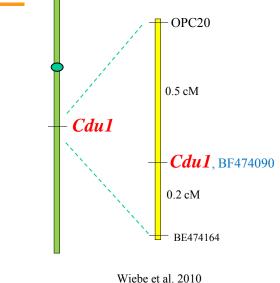
Cd is relatively poorly absorbed into the body, but once absorbed is slowly excreted, like other metals, and **accumulates in the kidney** causing damage.

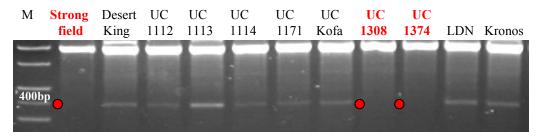
## Europe 2006

Commission Regulations No 1881/2006: wheat limit 2.0 µg/kg of wet weight (200 ppb)

## **Europe March 2009**

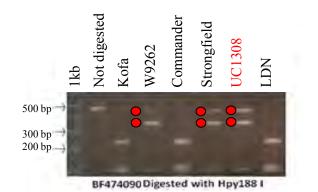

- The European Food Safety Authority (EFSA) established tolerable weekly intake (TWI) for cadmium of 2.5  $\mu$ g/kg bw (=2.5 ppb per week)
- The mean exposure for adults across Europe is ~2.5 ppb. Subgroups such as vegetarians and children may exceed the TWI by about 2-fold.


• They concluded that the Cd intake of the European population should be reduced, and are revising limits on foods.


## **June 2010**

• The FAO/ WHO JECFA recently adopted a provisional tolerable <u>monthly</u> intake (PTMI) for cadmium of 25ug/kg bw (=25 ppb per month, 2.5-fold higher than EFSA).

## Low Grain Cadmium uptake: Cdu1 (chromosome 5BL)

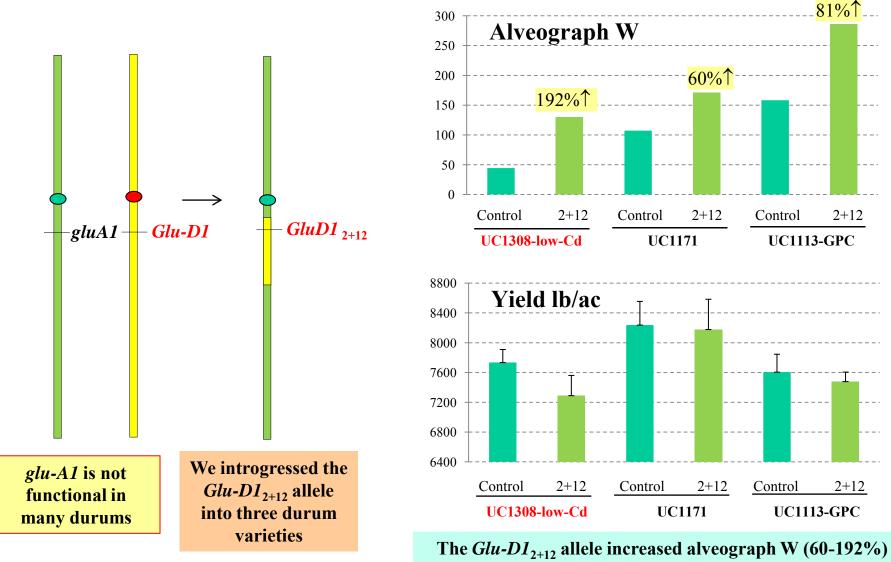




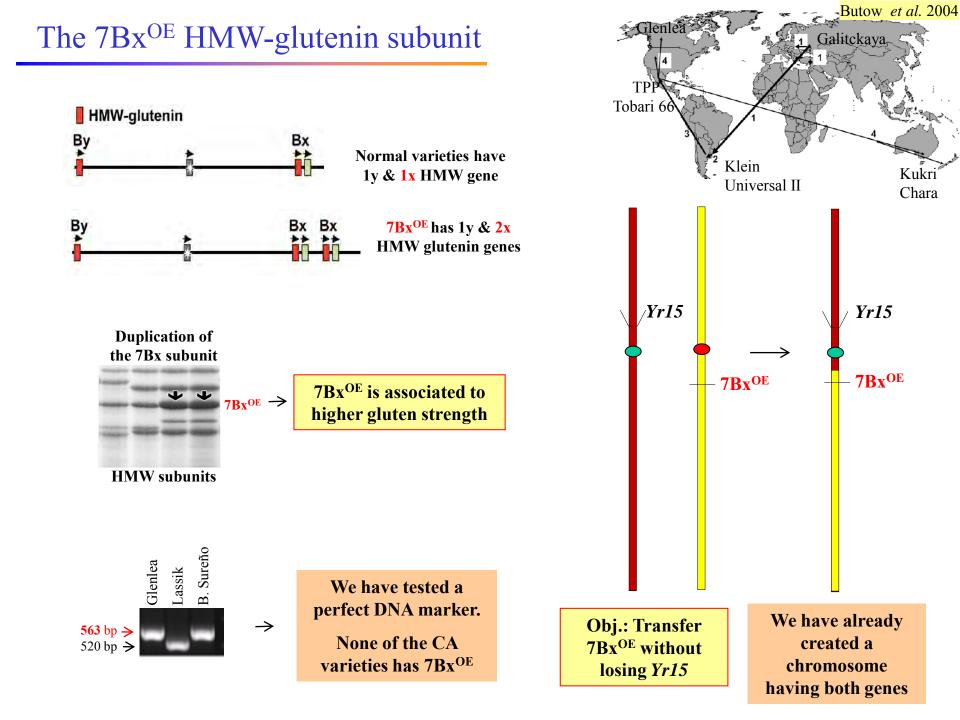




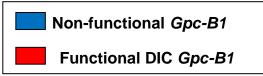

Problem: dominant marker in repulsion

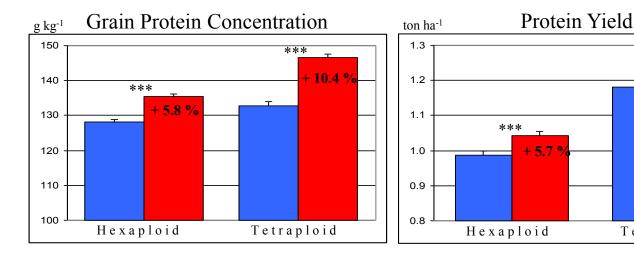


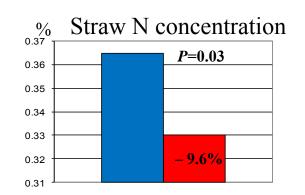

New CAP marker BF474090 completely linked and codominant! We can now see heterozygous *Cdu1* plants *Cdu1* is being introgressed in


- \* UC1113 (BC<sub>4</sub>)
  - ) \* Kronos (BC<sub>4</sub>)
- \* Desert King (BC<sub>1</sub>)

- \* Tipai (BC<sub>1</sub>)
- \* D99-425<sub>APB</sub> (BC<sub>4</sub>) \* D04AZ-335<sub>APB</sub> (BC<sub>4</sub>)


## Replacement of pasta non-functional glu-A1 by Glu-D1





without significant penalty on yield (2010 results Imperial)



## Deploy Gpc-B1 to increase grain protein





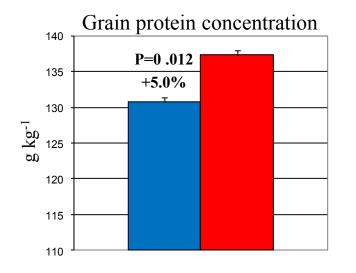


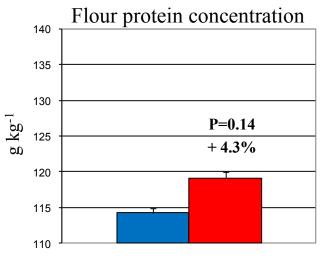
The *Gpc-B1* gene increases grain protein content by remobilizing more N from the leaves

- Field experiments
- 2 years

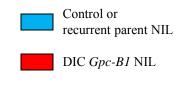
ns T

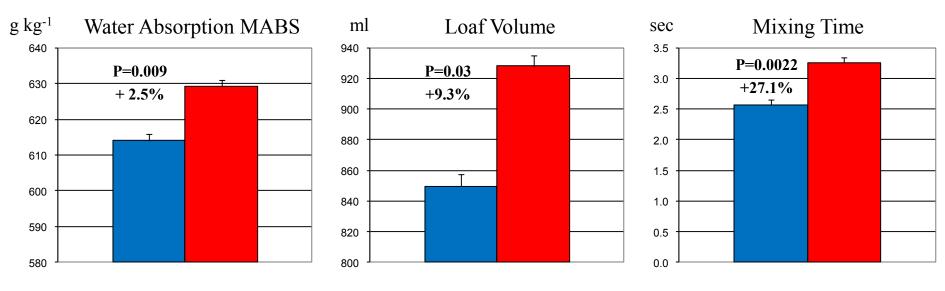
Tetraploid


+ 5.1 %


- 3 locations
- 5-10 replications
- 6 hexaploid lines
- 3 tetraploid lines

Crop Science 2010 Released varieties

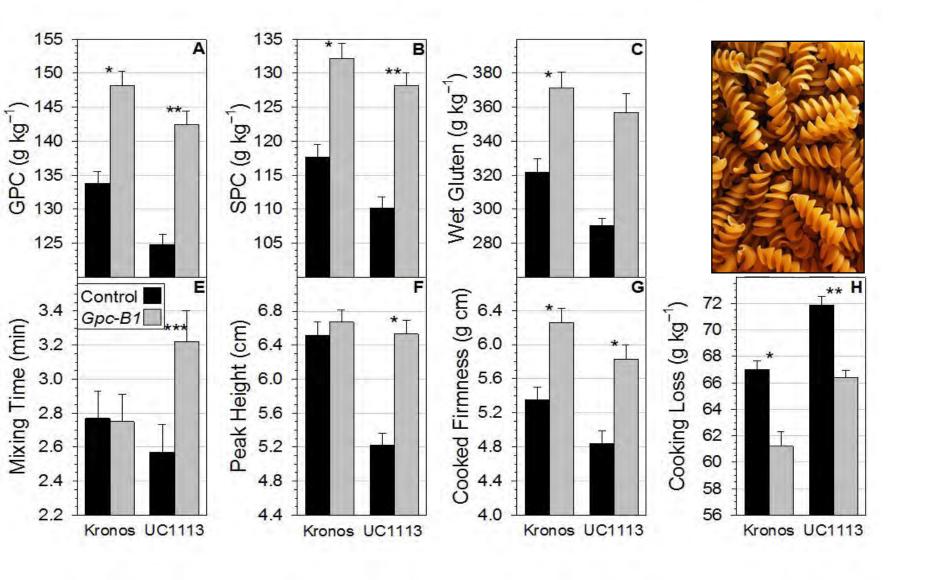

- Lassik
- Westmore
- Dessert King-High Protein


# Effects of Gpc-B1 on bread-making quality







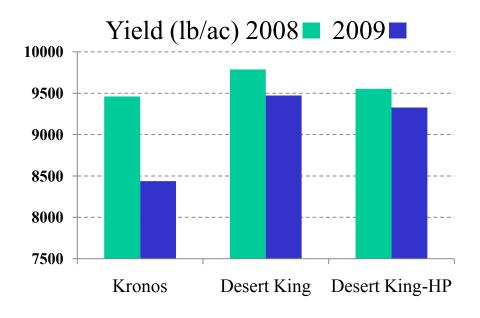


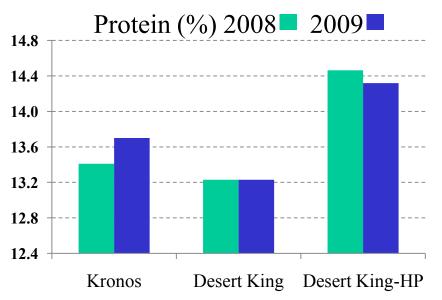



## Effects of Gpc-B1 on pasta quality

Control or recurrent parent NIL

DIC Gpc-B1 NIL





# Durum variety 'Desert King High Protein'

| Davis Elite trials | Yield lb/ac | Protein % |
|--------------------|-------------|-----------|
| Kronos             | 8,950       | 13.6      |
| Desert King        | 9,630       | 13.2      |
| Desert King-HP     | 9,440       | 14.4      |



Desert-King-HP High protein >14% High-yield Foundation seed ready







## Traditional breeding

Cross lines with complementary characteristics. Fix the variation by 6 generations of self-pollination. Select the best lines based on quality tests.

## • Discovery of important genes

Cross lines with complementary characteristics. Find molecular markers close to the important quality traits. Use markers to accelerate the incorporation of these traits.

## • Incorporation of new diversity from related species or mutants

Identify valuable genes.

Cross the wild germplasm with adapted varieties. Recover the adapted characteristics by backcrossing. Generate new variability by TILLING

# Entries Common Wheat Collaborators 2010

|        |       |              |      |                                                       |        |       | Yield 2010 |          |
|--------|-------|--------------|------|-------------------------------------------------------|--------|-------|------------|----------|
| TEST # | Entry | Name         | Туре | Parentage                                             | Source | Sac   | San Joaq.  | Imperial |
| 1      | 1651  | WB SJ908-203 | HWS  | NOT RELEASED ELIMINATED                               | WB     | 5,610 | 6,320      | 6,190    |
| 2      | 1600  | UCD 07013/30 | HRS  | UC1036 Yr5, Lr47, 2NS                                 | UC     | 6,800 | 7,940      | 7,450    |
| 3      | MIX-C | BL. GRANDE   | HWS  | EXPRESS//CLEO/2INIA66/4/PB775                         | RSI    | 6,500 | 7,750      | 6,870    |
| 4      | 1673  | WWW CNBR9302 | HRS  |                                                       | WWW    | 5,260 | 6,850      | 6,140    |
| 5      | 1660  | RSI 05W90314 | HRS  |                                                       | RSI    | 7,660 | 7,940      | NT       |
| 6      | 1638  | APB W11-6    | HWS  |                                                       | APB    | 3,590 | 5,600      | 4,770    |
| 7      | 1599  | UCD 07013/24 | HRS  | SUMMIT/3/HAHN/TURACO/2/TURACO                         | UC     | 7,260 | 7,930      | 6,860    |
| 8      | MIX-A | BL.GRANDE    | HWS  | EXPRESS//CLEO/2INIA66/4/PB775                         | RSI    | 6,500 | 7,750      | 6,870    |
| 9      | MIX-B | BL. GRANDE   | HWS  | EXPRESS//CLEO/2INIA66/4/PB775                         | RSI    | 6,500 | 7,750      | 6,870    |
| 10     | 1643  | UCD 09014/16 | HWS  | UC896*4/ID0377S//KL*2/IDO377S/3/UC896 <sub>5+10</sub> | UC     | 5,440 | 7,180      | 5,970    |
| 11     | 1647  | WB SJ908-186 | HRS  | NOT RELEASED ELIMINATED                               | WB     | 5,640 | 6,190      | 6,260    |
| 12     | 1650  | WB SJ908-247 | HRS  | BC1 SOLANO YR15, YR17 WB-Rockland                     | WB     | 6,550 | 6,700      | 6,300    |
| 13     | 1616  | UCD 0810/5   | HRS  | UC1357/KERN + <i>Yr17-Lr37</i>                        | UC     | 6,120 | 6,970      | 7,390    |
| 14     | 1642  | UCD 09013/4  | HRS  | UC1357/EXPRESS + Yr17-Lr37                            | UC     | 6,130 | 6,730      | 6,270    |
| 15     | 1659  | RSI 05W90192 | HRS  |                                                       | RSI    | 6,640 | 7,480      | 6,390    |
| 16     | 1608  | WWW CNBR9330 | HRS  | HRS MSFRS QUALITY POP                                 | WWW    | 5,230 | 6,410      | 6,390    |

# Entries Durum Wheat Collaborators 2010

|        |             |                   | Yield |          |       |                    |  |
|--------|-------------|-------------------|-------|----------|-------|--------------------|--|
| TEST # | ENTRY       | NAME              | Sac   | S. Joaq. | In    | nperial            |  |
| 1      | MIX951 - C  | KRONOS            |       | 5,430    | 7,290 | 8,350              |  |
| 2      | 1585-Tipai  | TIPAI             |       | 7,120    | 7,400 | 8,890              |  |
| 3      | 1589        | NORMANO ALLSTAR   |       | 2,890    | NT    | 7,430              |  |
| 4      | 1641        | APB D2-97         |       | 6,340    | 8,390 | 8,830              |  |
| 5      | 1435        | WWW D8270         |       | NT       | 7,030 | 7,970              |  |
| 6      | MIX 951 - B | KRONOS            |       | 5,430    | 7,290 | 8,350              |  |
| 7      | 1628        | UCD 08201/20      |       | 6,730    | 6,960 | 8,340              |  |
| 8      | MIX 951 - A | KRONOS            |       | 5,430    | 7,290 | 8,350              |  |
| 9      | 1629        | UCD 08201/21      |       | 7,170    | 8,200 | <mark>8,970</mark> |  |
| 10     | 1644        | UCD 09210/17      |       | 6,090    | 6,330 | 8,420              |  |
| 11     | 1645        | UCD 09213/30      |       | 8,100    | 8,560 | 8,310              |  |
| 12     | 1583        | SARAGOLLA ALLSTAR |       | 5,830    | NT    | 8,790              |  |
| 13     | 1646        | UCD 09220/135     |       | 6,500    | 8,170 | 8,740              |  |
| 14     | 1640        | APB D1-2          |       | 6,880    | 8,030 | 8,570              |  |
| 15     | 1674        | TANGO WWW         |       | 4,140    | 5,980 | 7,470              |  |
| 16     | 1656        | WB SJ807-006      |       | 5,540    | 7,430 | NT                 |  |
| 17     | 1582        | MAESTRALE ALLSTAR |       | 6,180    | NT    | 8,010              |  |

# Consistency common wheat collaborators 2010

|                |               | Protein   |                |              |              |         | TEST WEIGHT |       |                |              |              | TKW               |              |              |                |              |                  |
|----------------|---------------|-----------|----------------|--------------|--------------|---------|-------------|-------|----------------|--------------|--------------|-------------------|--------------|--------------|----------------|--------------|------------------|
| ID Entry       | Name          | CWC ADM   | Cereal<br>Food | Bay<br>State | Hor.<br>Mil. | Conagra | CWC         | ADM   | Cereal<br>Food | Bay<br>State | Hor.<br>Mil. | Conagra           | CWC          | ADM          | Cereal<br>Food | Hor.<br>Mil. | Conagra          |
| 1 1651         | WB SJ908-203  | 11.8      | 13.3           | 13.4         | 13.4         | 13.6    | 65.2        |       | 64.9           | 65.0         | 65.2         | 64.8              | 52.0         |              | 47.6           | 45.1         | 48.0             |
| 2 1600         | UCD 07013/30  | 12.3 12.0 | 12.3           | 12.3         | 12.4         | 12.1    | 63.6        | 64.1  | 63.9           | 64.8         | 64.1         | <mark>63.8</mark> | 52.4         | 45.3         | 44.2           | 48.1         | 46.4             |
| 3 MIX-O        | BLANCA GRANDE | 11.9 12.3 | 11.9           | 12.0         | 12.0         | 12.1    | 64.4        | 64.8  | 64.5           | 65.0         | 65.1         | 64.7              | 49.7         | 46.1         | 42.8           | 43.3         | 45.2             |
| 4 1673         | WWW CNBR9302  | 9.0 9.5   | 8.3            | 9.1          | 8.9          | 9.2     | 63.1        | 64.0  | 62.4           | 63.1         | 63.9         | 63.6              | 41.7         | 39.3         | 40.2           | 40.9         | 40.1             |
| 5 1660         | RSI 05W90314  | 9.9 11.3  | 10.8           | 11.0         | 10.9         | 11.3    | 63.1        | 63.5  | 63.4           | 63.0         | 63.5         | 63.2              | 49.2         | 43.8         | 41.2           | 43.6         | 44.6             |
| 6 1638         | APB W11-6     | 12.6 12.8 | 11.8           | 11.5         | 12.0         | 12.5    | 63.6        | 64.2  | 64.1           | 64.0         | 64.1         | 64.1              | 55.6         | 50.3         | 46.6           | 46.4         | 50.7             |
| 7 1599         | UCD 07013/24  | 10.3 11.2 | 10.6           | 11.6         | 10.8         | 11.1    | 62.9        | 62.9  | 62.9           | 63.2         | 62.9         | 62.9              | 44.3         | 38.5         | 40.0           | 37.0         | 39.0             |
| 8 MIX-A        | BLANCA GRANDE | 11.8 12.5 | 11.9           | 12.4         | 12.0         | 12.3    | 64.5        | 64.9  | 64.6           | 64.9         | 64.8         | 64.7              | 49.6         | 46.4         | 42.4           | 44.4         | 45.4             |
| 9 MIX-E        | BLANCA GRANDE | 11.7 12.1 | 11.6           | 12.4         | 11.7         | 12.0    | 64.4        | 65.1  | 64.6           | 65.1         | 64.8         | 64.9              | 49.5         | 45.7         | 45.4           | 45.6         | 46.4             |
| 10 1643        | UCD 09014/16  | 10.7 12.0 | 11.9           | 12.5         | 12.5         | 12.5    | 64.0        | 64.2  | 64.0           | 64.2         | 64.2         | 64.2              | 49.2         | 46.7         | 42.2           | 41.7         | 42.8             |
| 11 <b>1647</b> | WB SJ908-186  | 12.7      | 13.2           | 13.6         | 13.2         | 13.3    | 64.6        |       | 64.8           | 65.0         | 64.9         | 64.5              | 51.0         |              | 47.2           | 47.2         | 47.3             |
| 12 1650        | WB SJ908-247  | 12.3 13.5 | 13.0           | 13.0         | 13.0         | 13.4    | 64.2        | 63.7  | 64.2           | 64.2         | 64.8         | 64.0              | 46.1         | 44.2         | 44.0           | 42.2         | 41.4             |
| 13 1616        | UCD 0810/5    | 11.3      | 11.5           | 11.6         | 11.6         | 11.8    | <u>63.5</u> |       | 64.2           | 64.0         | 64.3         | 64.3              | 46.7         |              | 45.0           | 45.1         | 45.8             |
| 14 1642        | UCD 09013/4   | 12.7 11.9 | 11.5           | 11.6         | 11.6         | 11.8    | 63.0        | 63.9  | 63.7           | 63.7         | 63.6         | <u>63.5</u>       | 47.7         | 46.3         | 44.4           | 44.2         | 45.2             |
| 15 1659        | RSI 05W90192  | 11.5 12.1 | 11.4           | 11.7         | 11.7         | 11.8    | 64.4        | 64.5  | 64.3           | 64.2         | 65.0         | 64.7              | 40.8         | 46.1         | 43.0           | 43.6         | 43.6             |
| 16 1608        | WWW CNBR9330  | 9.1 9.0   | 8.4            | 10.7         | 9.0          | 9.0     | 63.4        | 64.1  | 64.2           | 64.4         | 63.9         | 63.8              | 42.4         | 41.5         | 39.6           | 40.1         | 39.8             |
|                |               | 000/ 000/ | 0.50/          | 0.604        | 0.40/        | 0.40/   | 0.604       | 0.000 | 0.001          | 0.2.07       | 0.694        | 0004              | <b>5</b> 20/ | <b>2</b> 00/ | <b>2</b> 00/   | =00/         | 0.604            |
|                | AVERAGE       | 83% 92%   | 95%            | 86%          | 94%          | 94%     | 86%         | 82%   | 82%            | 83%          | 86%          | <mark>89%</mark>  | 73%          | 79%          | 79%            | 79%          | <mark>86%</mark> |

# Consistency common wheat collaborators 2010

|                |               |      | Farino;<br>absorp |                |              | Farinograph peak |                  |     |      |                |              |                | Loaf volume      |     |      |                |                |             |
|----------------|---------------|------|-------------------|----------------|--------------|------------------|------------------|-----|------|----------------|--------------|----------------|------------------|-----|------|----------------|----------------|-------------|
| TES<br>T#Entry | Name          | CWC  | ADM               | Cereal<br>Food | Bay<br>State | Hor.<br>Mil. C   | Conagra          | CWC | ADM  | Cereal<br>Food | Bay<br>State | Hor.<br>Mil. C | Conagra          | CWC | ADM  | Cereal<br>Food | Hor.<br>Mil. C | Conagra     |
| 1 <b>1651</b>  | WB SJ908-203  | 68.0 |                   | 68.9           | 66.1         | 65.8             | 67.4             | 6.5 |      | 8              | 9.8          | 6.75           | 8.0              | 875 |      | 3044           | 860            | 2350        |
| 2 1600         | UCD 07013/30  | 63.0 | 64.4              | 60.7           | 61.9         | 61.4             | 59.3             | 6.0 | 7.0  | 5              | 8.5          | 5.25           | 4.5              | 920 | 2800 | 2985           | 858            | <u>2500</u> |
| 3 MIX-C        |               | 67.4 | 68.4              | 68.4           | 66.0         | 64.8             | 66.9             | 5.5 | 7.5  | 6              | 5.8          | 5.75           | 6.0              | 920 | 2750 | 3074           | 865            | 2525        |
| 4 1673         | WWW CNBR9302  | 68.0 | 67.0              | 65.4           | 62.3         | 64.0             | 65.1             | 2.0 | 3.5  | 3              | 6            | 4.75           | 3.0              | 675 | 2500 | 2514           | 590            | 2175        |
| 5 1660         | RSI 05W90314  | 64.2 | 66.8              | 63.8           | 62.3         | 62.9             | 62.7             | 3.5 | 5.5  | 5              | 6            | 4.50           | 4.0              | 775 | 2850 | 3015           | 820            | 2600        |
| 6 1638         | APB W11-6     | 67.0 | 67.2              | 63.0           | 64.4         | 64.1             | 65.7             | 6.0 | 6.5  | 5              | 6.5          | 5.50           | 6.0              | 880 | 2800 | 2897           | 875            | 2575        |
| 7 1599         | UCD 07013/24  | 65.2 | 65.4              | 62.1           | 62.7         | 63.6             | <u>63.9</u>      | 3.5 | 5.0  | 5              | 5.3          | 4.00           | 4.5              | 800 | 2650 | 2897           | 805            | 2375        |
| 8 MIX-A        | BLANCA GRANDE | 67.6 | 70.2              | 68.2           | 66.3         | 65.5             | 67.6             | 5.5 | 12.5 | 5              | 5.2          | 5.50           | 6.0              | 920 | 2850 | 3103           | 848            | 2475        |
| 9 MIX-B        | BLANCA GRANDE | 67.8 | 70.0              | 65.0           | 65.6         | 65.7             | 67.6             | 5.0 | 12.0 | 5              | 4.5          | 4.50           | 5.5              | 920 | 2800 | 2926           | 913            | 2350        |
| 10 1643        | UCD 09014/16  | 69.2 | 70.7              | 68.2           | 67.1         | 67.6             | 67.5             | 5.0 | 5.5  | 5              | 4.5          | 4.50           | 5.5              | 760 | 2550 | 2838           | 838            | <u>2350</u> |
| 11 <b>1647</b> | WB SJ908-186  | 70.4 |                   | 68.5           | 68.2         | 68.1             | 67.4             | 8.8 |      | 8              | 9.5          | 7.50           | 8.5              | 900 |      | 3074           | 887.5          | 2375        |
| 12 1650        | WB SJ908-247  | 69.8 | 72.4              | 68.9           | 66.0         | 67.0             | 68.4             | 4.8 | 8.0  | 6              | 4.8          | 6.50           | 5.5              | 890 | 2925 | 2838           | 863            | 2450        |
| 13 1616        | UCD 0810/5    | 64.8 |                   | 62.2           | 62.2         | 62.0             | 62.4             | 4.8 |      | 5              | 5            | 5.50           | 5.0              | 885 |      | 2985           | 863            | 2450        |
| 14 1642        | UCD 09013/4   | 71.0 | 71.8              | 70.2           | 67.8         | 71.0             | <u>68.8</u>      | 6.0 | 4.5  | 5              | 3.7          | 4.25           | 4.5              | 900 | 2600 | 2853           | 780            | 2425        |
| 15 1659        | RSI 05W90192  | 64.0 | 65.8              | 62.4           | 62.4         | 63.2             | 62.4             | 5.0 | 5.0  | 5              | 4.5          | 4.50           | 4.5              | 850 | 2900 | 3044           | 825            | 2650        |
| 16 1608        | WWW CNBR9330  | 69.0 | 72.0              | 68.5           | 65.6         | 66.3             | 68.6             | 2.5 | 2.5  | 4              | 2.2          | 2.50           | 2.0              | 625 |      | 2691           | 500            | 2200        |
|                | AVERAGE       | 92%  | 89%               | 89%            | 90%          | 88%              | <mark>89%</mark> | 74% | 53%  | 75%            | 70%          | 73%            | <mark>83%</mark> | 70% | 67%  | 72%            | 73%            | 66%         |

# Comparison Durum Davis vs. Imperial

|                                | D Imp             | D Imp     | D Imp               | D Imp     | D Imp           | D Imp              | D Imp           | D Imp          | D Imp      |
|--------------------------------|-------------------|-----------|---------------------|-----------|-----------------|--------------------|-----------------|----------------|------------|
| TES<br>T# ENTRY NAME           | PROT %            | SEM. EXT. | ALVEO-<br>GRAPH W   | WET GLUT  | DRY GLUT        | COLOR "b"<br>VALUE | COLOR<br>SCORE  | COOK LOSS<br>% | FIRM (gcm) |
| 1 MIX951 - C KRONOS            | 11.7 13.6         | 60.3 60.1 | 186 111             | 28.2 36.5 | 10.9 12.6       | 24.3 25.3          | 8.0 9.5         | 8.0 7.1        | 7.0 8.1    |
| 2 1585-Tipai TIPAI             | 9.9 13.1          | 65.9 63.9 | 144 <b>90</b>       | 24.4 26.8 | 9.4 <b>10.1</b> | 26.0 28.0          | 8.5 <b>10.0</b> | 7.7 7.4        | 6.8 8.3    |
| 3 1589 NORMANO                 | allstar 10.4 13.9 | 64.0 63.6 | 171 135             | 25.1 33.5 | 9.7 11.6        | 25.5 26.2          | <b>7.5</b> 9.0  | 8.7 7.6        | 7.0 8.3    |
| 4 1641 APB D2-97               | 10.6 13.5         | 62.9 62.3 | 223 166             | 25.8 32.7 | 9.7 11.3        | 27.1 27.3          | 8.5 9.0         | 8.3 7.3        | 7.2 8.5    |
| 5 1435 WWW D8270               | ) 12.4 13.6       | 62.6 60.4 | 247 113             | 32.5 34.7 | 11.3 12.9       | 25.7 26.2          | <b>7.5</b> 8.5  | 7.0 7.5        | 7.6 8.1    |
| 8 1628 UCD 08201/2             | 0 10.1 13.9       | 63.8 63.4 | 183 173             | 23.5 35.0 | 8.3 12.1        | 25.9 26.9          | 9.0 <b>10.0</b> | 8.7 7.3        | 6.7 9.1    |
| 10 1629 UCD 08201/2            | 1 11.0 14.5       | 65.6 62.0 | 182 <b>58</b>       | 26.6 36.0 | 9.6 12.3        | 24.8 26.6          | 8.0 <b>8.5</b>  | 8.2 7.9        | 6.4 8.2    |
| 11 1644 UCD 09210/1            | 7 11.0 13.6       | 63.2 64.2 | 158 <mark>96</mark> | 27.2 35.6 | 9.6 11.7        | 25.3 26.5          | 9.0 9.5         | 8.2 8.2        | 7.4 8.0    |
| 12 1645 UCD 09213/3            |                   | 60.4 61.6 | <b>101</b> 104      | 19.0 34.4 | 7.0 11.9        | 26.0 27.3          | 10.0 9.0        | 8.2 6.8        | 5.8 8.5    |
| 14 1583 SARAGOLLA<br>ALLSTAR   | A 9.9 12.8        | 63.8 65.4 | 179 95              | 27.9 25.9 | 9.8 9.6         | 24.4 25.0          | 8.0 8.5         | 8.7 7.9        | 6.4 7.9    |
| 15 1646 UCD 09220/1            | 35 10.4 14.6      | 65.2 63.7 | 135 81              | 28.0 40.4 | 10.1 14.2       | 25.7 28.4          | 8.5 <b>10.0</b> | 8.6 6.5        | 6.4 9.2    |
| 17 1640 APB D1-2               | 11.2 13.8         | 63.2 65.9 | 224 213             | 28.1 37.3 | 10.2 13.1       | 26.7 28.7          | 9.0 10.0        | 7.6 7.2        | 6.8 8.2    |
| 18 1674 TANGO WW               |                   | 62.1 62.2 | 107 39              | 31.7 32.4 | 11.0 11.8       | 24.9 25.7          | <b>7.5</b> 9.0  | 7.1 7.8        | 7.5 8.3    |
| 20 1582MAESTRALI20 1582ALLSTAR | E 9.6 15.1        | 64.7 60.5 | 108 98              | 22.7 43.4 | 8.2 15.0        | 22.1 25.5          | 7.5 8.0         | 8.1 8.3        | 6.2 8.3    |
| AVERAGE                        | 10.5 13.7         | 63.4 62.8 | 167.5 112.2         | 26.5 34.6 | 9.6 12.2        | 25.3 26.7          | 8.3 9.2         | 8.1 7.5        | 6.8 8.4    |
| Correlation Davis vs. Impe     | erial <u>24%</u>  | 38%       | 59%                 | -10%      | -3%             | 71%                | 53%             | -11%           | -29%       |

**Good correlation**: semolina extraction, Alveograph W, and Color **Poor correlation**: protein content, wet and dry gluten, firmness and cooking loss. It might be better to run the durum collaborators directly in Imperial

### **EFFECT ON BREAD QUALITY**

**Reconstitution experiments:** Substitution with highamylose wheat flour (HAF= **37.5% amylose SGP mutant**)

#### **Dough properties:**

- decreased peak and final viscosities
- doughs were weaker and less elastic
- doughs absorbed more water than those of the normal wheat flour.

#### After baking:

- Substitution of 50% flour with HAF increased
  - RS from 1% to 3% (db).
  - dietary fiber from 13% to 17% (db).
- RS increased gradually during storage for 1-5 d.
- loaf volumes of up to 30% HAF were not significantly different from control
- substitution with 50% HAF decreased loaf volume.
- During storage, the firmness of breadcrumb with 10% HAF substitutions was higher than control.

**Conclusion**: Substitution of up to 50% normal wheat flour with HAF (~31% amylose) results in bread with acceptable quality and significantly high amount of RS.